
ASM LABs

1



sys_write()

SECTION .data

msg db 'Hello World!', 0Ah; assign msg variable with your message string

SECTION .text

global _start

_start:

mov edx, 13 ; number of bytes to write - one for each letter 

;plus 0Ah (line feed character)

mov ecx, msg ; move the memory address of our message string into ecx

mov ebx, 1 ; write to the STDOUT file

mov eax, 4 ; invoke SYS_WRITE (kernel opcode 4)

int 80h

2



~$ nasm -f elf helloworld.asm
~$ ld -m elf_i386 helloworld.o -o helloworld
~$ ./helloworld

Hello World!
Segmentation fault

3



sys_exit()

SECTION .data

msg db 'Hello World!', 0Ah

SECTION .text

global _start

_start:

mov edx, 13

mov ecx, msg

mov ebx, 1

mov eax, 4

int 80h

mov ebx, 0 ; return 0 status on exit - 'No Errors'

mov eax, 1 ; invoke SYS_EXIT (kernel opcode 1)

int 80h

4



Calculate string length
SECTION .data

msg db 'Hello, brave new world!', 0Ah ; we can modify this now without having to update 

; anywhere else in the program

SECTION .text

global _start

_start:

mov ebx, msg ; move the address of our message string into EBX

mov eax, ebx ; move the address in EBX into EAX as well (Both now point to the same segment in memory)

nextchar:

cmp byte [eax], 0 ; compare the byte pointed to by EAX at this address against zero

jz finished ; jump to the point in the code labeled 'finished'

inc eax ; increment the address in EAX by one byte (if the zero flagged has NOT been set)

jmp nextchar ; jump to the point in the code labeled 'nextchar'

finished:

sub eax, ebx ; subtract the address in EBX from the address in EAX

; remember both registers started pointing to the same address (see line 15)

; but EAX has been incremented one byte for each character in the message string

; when you subtract one memory address from another of the same type

; the result is number of segments between them-in this case the number of bytes

mov edx, eax ; EAX now equals the number of bytes in our string

mov ecx, msg ; the rest of the code should be familiar now

mov ebx, 1

mov eax, 4

int 80h

mov ebx, 0

mov eax, 1

int 80h
5



strlen subroutineSECTION .data

msg db 'Hello, brave new world!', 0Ah

SECTION .text

global _start

_start:

mov eax, msg ; move the address of our message string into EAX

call strlen ; call our function to calculate the length of the string

mov edx, eax ; our function leaves the result in EAX

mov ecx, msg ; this is all the same as before

mov ebx, 1

mov eax, 4

int 80h

mov ebx, 0

mov eax, 1

int 80h

strlen: ; this is our first function declaration

push ebx ; push the value in EBX onto the stack to preserve it while we use EBX in this 

function

mov ebx, eax ; move the address in EAX into EBX (Both point to the same segment in memory)

nextchar: ; this is the same as lesson3

cmp byte [eax], 0

jz finished

inc eax

jmp nextchar

finished:

sub eax, ebx

pop ebx ; pop the value on the stack back into EBX

ret ; return to where the function was called

6



External include files
functions.asm

slen:

push ebx

mov ebx, eax

nextchar:

cmp byte [eax], 0

jz finished

inc eax

jmp nextchar

finished:

sub eax, ebx

pop ebx

ret

; void sprint(String message)

; String printing function

sprint:

push edx

push ecx

push ebx

push eax

call slen

mov edx, eax

pop eax

mov ecx, eax

mov ebx, 1

mov eax, 4

int 80h

pop ebx

pop ecx

pop edx

ret

; void exit()

; Exit program and restore resources

quit:

mov ebx, 0

mov eax, 1

int 80h

ret

7



External include files (cont.)

%include 'functions.asm' ; include our external file

SECTION .data

msg1 db 'Hello, brave new world!', 0Ah ; our first message string

msg2 db 'This is how we recycle in NASM.', 0Ah ; our second message string

SECTION .text

global _start

_start:

mov eax, msg1 ; move the address of our first message string into EAX

call sprint ; call our string printing function

mov eax, msg2 ; move the address of our second message string into EAX

call sprint ; call our string printing function

call quit ; call our quit function

8



Passing arguments

• When run a program, any passed arguments are loaded onto the stack in

reverse order.

• The last two stack items for a NASM compiled program are always the name

of the program and the number of passed arguments.

9



%include 'functions.asm'

SECTION .text

global _start

_start:

pop ecx ; first value on the stack is the number of arguments

nextArg:

cmp ecx, 0h ; check to see if we have any arguments left

jz noMoreArgs ; if zero flag is set jump to noMoreArgs label 

pop eax ; pop the next argument off the stack

call sprintLF ; call our print with linefeed function

dec ecx ; decrease ecx (number of arguments left) by 1

jmp nextArg ; jump to nextArg label

noMoreArgs:

call quit

10



sys_read()
%include 'functions.asm'

SECTION .data

msg1 db 'Please enter your name: ', 0h ; message string asking user for input

msg2 db 'Hello, ', 0h ; message string to use after user has entered their name

SECTION .bss

sinput: resb 255 ; reserve a 255 byte space in memory for the users input string

SECTION .text

global _start

_start:

mov eax, msg1

call sprint

mov edx, 255 ; number of bytes to read

mov ecx, sinput ; reserved space to store our input (known as a buffer)

mov ebx, 0 ; write to the STDIN file

mov eax, 3 ; invoke SYS_READ (kernel opcode 3)

int 80h

mov eax, msg2

call sprint

mov eax, sinput ; move our buffer into eax (Note: input contains a linefeed)

call sprint ; call our print function

call quit
11



Exercises 

1. Write a program that print to display numbers from 0 to 9

2. Write a program that print to display numbers from 0 to 10

12



Execute Command

The EXEC family of functions replace the currently running process with a new

process, that executes the command specified when calling it.

Naming convention

The naming convention used for this family of functions is exec (execute) followed

by one or more of the following letters.

•E - An array of pointers to environment variables is explicitly passed to the new

process image.

•L - Command-line arguments are passed individually to the function.

•P - Uses the PATH environment variable to find the file named in the path

argument to be executed.

•V - Command-line arguments are passed to the function as an array of pointers.

13



sys_execve

%include 'functions.asm'

SECTION .data

command db '/bin/echo', 0h ; command to execute

arg1 db 'Hello World!', 0h

arguments dd command

dd arg1 ; arguments to pass to commandline (in this case just one)

dd 0h ; end the struct

environment dd 0h ; arguments to pass as environment variables (inthis case none) end the struct

SECTION .text

global _start

_start:

mov edx, environment ; address of environment variables

mov ecx, arguments ; address of the arguments to pass to the commandline

mov ebx, command ; address of the file to execute

mov eax, 11 ; invoke SYS_EXECVE (kernel opcode 11)

int 80h

call quit ; call our quit function

14



sys_fork
• Use sys_fork to create a new process that duplicates the current process

%include 'functions.asm'

SECTION .data

childMsg db 'This is the child process', 0h ; a message string

parentMsg db 'This is the parent process', 0h ; a message string

SECTION .text

global _start

_start:

mov eax, 2 ; invoke SYS_FORK (kernel opcode 2)

int 80h

cmp eax, 0 ; if eax is zero we are in the child process

jz child ; jump if eax is zero to child label

parent:

mov eax, parentMsg ; inside our parent process move parentMsg into eax

call sprintLF ; call our string printing with linefeed function

call quit ; quit the parent process

child:

mov eax, childMsg ; inside our child process move childMsg into eax

call sprintLF ; call our string printing with linefeed function

call quit ; quit the child process

15



Exercises 

• Write code example that call other common 

syscall, such as:

creat, sync, open, close, wait, kill

16


